libavcodec/svq1enc.c
Go to the documentation of this file.
00001 /*
00002  * SVQ1 Encoder
00003  * Copyright (C) 2004 Mike Melanson <melanson@pcisys.net>
00004  *
00005  * This file is part of FFmpeg.
00006  *
00007  * FFmpeg is free software; you can redistribute it and/or
00008  * modify it under the terms of the GNU Lesser General Public
00009  * License as published by the Free Software Foundation; either
00010  * version 2.1 of the License, or (at your option) any later version.
00011  *
00012  * FFmpeg is distributed in the hope that it will be useful,
00013  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00014  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00015  * Lesser General Public License for more details.
00016  *
00017  * You should have received a copy of the GNU Lesser General Public
00018  * License along with FFmpeg; if not, write to the Free Software
00019  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
00020  */
00021 
00030 #include "avcodec.h"
00031 #include "dsputil.h"
00032 #include "mpegvideo.h"
00033 #include "h263.h"
00034 #include "internal.h"
00035 
00036 #include "svq1.h"
00037 #include "svq1enc_cb.h"
00038 
00039 #undef NDEBUG
00040 #include <assert.h>
00041 
00042 
00043 typedef struct SVQ1Context {
00044     MpegEncContext m; // needed for motion estimation, should not be used for anything else, the idea is to make the motion estimation eventually independent of MpegEncContext, so this will be removed then (FIXME/XXX)
00045     AVCodecContext *avctx;
00046     DSPContext dsp;
00047     AVFrame picture;
00048     AVFrame current_picture;
00049     AVFrame last_picture;
00050     PutBitContext pb;
00051     GetBitContext gb;
00052 
00053     PutBitContext reorder_pb[6]; //why ooh why this sick breadth first order, everything is slower and more complex
00054 
00055     int frame_width;
00056     int frame_height;
00057 
00058     /* Y plane block dimensions */
00059     int y_block_width;
00060     int y_block_height;
00061 
00062     /* U & V plane (C planes) block dimensions */
00063     int c_block_width;
00064     int c_block_height;
00065 
00066     uint16_t *mb_type;
00067     uint32_t *dummy;
00068     int16_t (*motion_val8[3])[2];
00069     int16_t (*motion_val16[3])[2];
00070 
00071     int64_t rd_total;
00072 
00073     uint8_t *scratchbuf;
00074 } SVQ1Context;
00075 
00076 static void svq1_write_header(SVQ1Context *s, int frame_type)
00077 {
00078     int i;
00079 
00080     /* frame code */
00081     put_bits(&s->pb, 22, 0x20);
00082 
00083     /* temporal reference (sure hope this is a "don't care") */
00084     put_bits(&s->pb, 8, 0x00);
00085 
00086     /* frame type */
00087     put_bits(&s->pb, 2, frame_type - 1);
00088 
00089     if (frame_type == AV_PICTURE_TYPE_I) {
00090 
00091         /* no checksum since frame code is 0x20 */
00092 
00093         /* no embedded string either */
00094 
00095         /* output 5 unknown bits (2 + 2 + 1) */
00096         put_bits(&s->pb, 5, 2); /* 2 needed by quicktime decoder */
00097 
00098         i= ff_match_2uint16(ff_svq1_frame_size_table, FF_ARRAY_ELEMS(ff_svq1_frame_size_table), s->frame_width, s->frame_height);
00099         put_bits(&s->pb, 3, i);
00100 
00101         if (i == 7)
00102         {
00103                 put_bits(&s->pb, 12, s->frame_width);
00104                 put_bits(&s->pb, 12, s->frame_height);
00105         }
00106     }
00107 
00108     /* no checksum or extra data (next 2 bits get 0) */
00109     put_bits(&s->pb, 2, 0);
00110 }
00111 
00112 
00113 #define QUALITY_THRESHOLD 100
00114 #define THRESHOLD_MULTIPLIER 0.6
00115 
00116 static int encode_block(SVQ1Context *s, uint8_t *src, uint8_t *ref, uint8_t *decoded, int stride, int level, int threshold, int lambda, int intra){
00117     int count, y, x, i, j, split, best_mean, best_score, best_count;
00118     int best_vector[6];
00119     int block_sum[7]= {0, 0, 0, 0, 0, 0};
00120     int w= 2<<((level+2)>>1);
00121     int h= 2<<((level+1)>>1);
00122     int size=w*h;
00123     int16_t block[7][256];
00124     const int8_t *codebook_sum, *codebook;
00125     const uint16_t (*mean_vlc)[2];
00126     const uint8_t (*multistage_vlc)[2];
00127 
00128     best_score=0;
00129     //FIXME optimize, this doenst need to be done multiple times
00130     if(intra){
00131         codebook_sum= svq1_intra_codebook_sum[level];
00132         codebook= ff_svq1_intra_codebooks[level];
00133         mean_vlc= ff_svq1_intra_mean_vlc;
00134         multistage_vlc= ff_svq1_intra_multistage_vlc[level];
00135         for(y=0; y<h; y++){
00136             for(x=0; x<w; x++){
00137                 int v= src[x + y*stride];
00138                 block[0][x + w*y]= v;
00139                 best_score += v*v;
00140                 block_sum[0] += v;
00141             }
00142         }
00143     }else{
00144         codebook_sum= svq1_inter_codebook_sum[level];
00145         codebook= ff_svq1_inter_codebooks[level];
00146         mean_vlc= ff_svq1_inter_mean_vlc + 256;
00147         multistage_vlc= ff_svq1_inter_multistage_vlc[level];
00148         for(y=0; y<h; y++){
00149             for(x=0; x<w; x++){
00150                 int v= src[x + y*stride] - ref[x + y*stride];
00151                 block[0][x + w*y]= v;
00152                 best_score += v*v;
00153                 block_sum[0] += v;
00154             }
00155         }
00156     }
00157 
00158     best_count=0;
00159     best_score -= (int)(((unsigned)block_sum[0]*block_sum[0])>>(level+3));
00160     best_mean= (block_sum[0] + (size>>1)) >> (level+3);
00161 
00162     if(level<4){
00163         for(count=1; count<7; count++){
00164             int best_vector_score= INT_MAX;
00165             int best_vector_sum=-999, best_vector_mean=-999;
00166             const int stage= count-1;
00167             const int8_t *vector;
00168 
00169             for(i=0; i<16; i++){
00170                 int sum= codebook_sum[stage*16 + i];
00171                 int sqr, diff, score;
00172 
00173                 vector = codebook + stage*size*16 + i*size;
00174                 sqr = s->dsp.ssd_int8_vs_int16(vector, block[stage], size);
00175                 diff= block_sum[stage] - sum;
00176                 score= sqr - ((diff*(int64_t)diff)>>(level+3)); //FIXME 64bit slooow
00177                 if(score < best_vector_score){
00178                     int mean= (diff + (size>>1)) >> (level+3);
00179                     assert(mean >-300 && mean<300);
00180                     mean= av_clip(mean, intra?0:-256, 255);
00181                     best_vector_score= score;
00182                     best_vector[stage]= i;
00183                     best_vector_sum= sum;
00184                     best_vector_mean= mean;
00185                 }
00186             }
00187             assert(best_vector_mean != -999);
00188             vector= codebook + stage*size*16 + best_vector[stage]*size;
00189             for(j=0; j<size; j++){
00190                 block[stage+1][j] = block[stage][j] - vector[j];
00191             }
00192             block_sum[stage+1]= block_sum[stage] - best_vector_sum;
00193             best_vector_score +=
00194                 lambda*(+ 1 + 4*count
00195                         + multistage_vlc[1+count][1]
00196                         + mean_vlc[best_vector_mean][1]);
00197 
00198             if(best_vector_score < best_score){
00199                 best_score= best_vector_score;
00200                 best_count= count;
00201                 best_mean= best_vector_mean;
00202             }
00203         }
00204     }
00205 
00206     split=0;
00207     if(best_score > threshold && level){
00208         int score=0;
00209         int offset= (level&1) ? stride*h/2 : w/2;
00210         PutBitContext backup[6];
00211 
00212         for(i=level-1; i>=0; i--){
00213             backup[i]= s->reorder_pb[i];
00214         }
00215         score += encode_block(s, src         , ref         , decoded         , stride, level-1, threshold>>1, lambda, intra);
00216         score += encode_block(s, src + offset, ref + offset, decoded + offset, stride, level-1, threshold>>1, lambda, intra);
00217         score += lambda;
00218 
00219         if(score < best_score){
00220             best_score= score;
00221             split=1;
00222         }else{
00223             for(i=level-1; i>=0; i--){
00224                 s->reorder_pb[i]= backup[i];
00225             }
00226         }
00227     }
00228     if (level > 0)
00229         put_bits(&s->reorder_pb[level], 1, split);
00230 
00231     if(!split){
00232         assert((best_mean >= 0 && best_mean<256) || !intra);
00233         assert(best_mean >= -256 && best_mean<256);
00234         assert(best_count >=0 && best_count<7);
00235         assert(level<4 || best_count==0);
00236 
00237         /* output the encoding */
00238         put_bits(&s->reorder_pb[level],
00239             multistage_vlc[1 + best_count][1],
00240             multistage_vlc[1 + best_count][0]);
00241         put_bits(&s->reorder_pb[level], mean_vlc[best_mean][1],
00242             mean_vlc[best_mean][0]);
00243 
00244         for (i = 0; i < best_count; i++){
00245             assert(best_vector[i]>=0 && best_vector[i]<16);
00246             put_bits(&s->reorder_pb[level], 4, best_vector[i]);
00247         }
00248 
00249         for(y=0; y<h; y++){
00250             for(x=0; x<w; x++){
00251                 decoded[x + y*stride]= src[x + y*stride] - block[best_count][x + w*y] + best_mean;
00252             }
00253         }
00254     }
00255 
00256     return best_score;
00257 }
00258 
00259 
00260 static int svq1_encode_plane(SVQ1Context *s, int plane, unsigned char *src_plane, unsigned char *ref_plane, unsigned char *decoded_plane,
00261     int width, int height, int src_stride, int stride)
00262 {
00263     int x, y;
00264     int i;
00265     int block_width, block_height;
00266     int level;
00267     int threshold[6];
00268     uint8_t *src = s->scratchbuf + stride * 16;
00269     const int lambda= (s->picture.quality*s->picture.quality) >> (2*FF_LAMBDA_SHIFT);
00270 
00271     /* figure out the acceptable level thresholds in advance */
00272     threshold[5] = QUALITY_THRESHOLD;
00273     for (level = 4; level >= 0; level--)
00274         threshold[level] = threshold[level + 1] * THRESHOLD_MULTIPLIER;
00275 
00276     block_width = (width + 15) / 16;
00277     block_height = (height + 15) / 16;
00278 
00279     if(s->picture.pict_type == AV_PICTURE_TYPE_P){
00280         s->m.avctx= s->avctx;
00281         s->m.current_picture_ptr= &s->m.current_picture;
00282         s->m.last_picture_ptr   = &s->m.last_picture;
00283         s->m.last_picture.f.data[0] = ref_plane;
00284         s->m.linesize=
00285         s->m.last_picture.f.linesize[0] =
00286         s->m.new_picture.f.linesize[0] =
00287         s->m.current_picture.f.linesize[0] = stride;
00288         s->m.width= width;
00289         s->m.height= height;
00290         s->m.mb_width= block_width;
00291         s->m.mb_height= block_height;
00292         s->m.mb_stride= s->m.mb_width+1;
00293         s->m.b8_stride= 2*s->m.mb_width+1;
00294         s->m.f_code=1;
00295         s->m.pict_type= s->picture.pict_type;
00296         s->m.me_method= s->avctx->me_method;
00297         s->m.me.scene_change_score=0;
00298         s->m.flags= s->avctx->flags;
00299 //        s->m.out_format = FMT_H263;
00300 //        s->m.unrestricted_mv= 1;
00301 
00302         s->m.lambda= s->picture.quality;
00303         s->m.qscale= (s->m.lambda*139 + FF_LAMBDA_SCALE*64) >> (FF_LAMBDA_SHIFT + 7);
00304         s->m.lambda2= (s->m.lambda*s->m.lambda + FF_LAMBDA_SCALE/2) >> FF_LAMBDA_SHIFT;
00305 
00306         if(!s->motion_val8[plane]){
00307             s->motion_val8 [plane]= av_mallocz((s->m.b8_stride*block_height*2 + 2)*2*sizeof(int16_t));
00308             s->motion_val16[plane]= av_mallocz((s->m.mb_stride*(block_height + 2) + 1)*2*sizeof(int16_t));
00309         }
00310 
00311         s->m.mb_type= s->mb_type;
00312 
00313         //dummies, to avoid segfaults
00314         s->m.current_picture.mb_mean=   (uint8_t *)s->dummy;
00315         s->m.current_picture.mb_var=    (uint16_t*)s->dummy;
00316         s->m.current_picture.mc_mb_var= (uint16_t*)s->dummy;
00317         s->m.current_picture.f.mb_type = s->dummy;
00318 
00319         s->m.current_picture.f.motion_val[0] = s->motion_val8[plane] + 2;
00320         s->m.p_mv_table= s->motion_val16[plane] + s->m.mb_stride + 1;
00321         s->m.dsp= s->dsp; //move
00322         ff_init_me(&s->m);
00323 
00324         s->m.me.dia_size= s->avctx->dia_size;
00325         s->m.first_slice_line=1;
00326         for (y = 0; y < block_height; y++) {
00327             s->m.new_picture.f.data[0] = src - y*16*stride; //ugly
00328             s->m.mb_y= y;
00329 
00330             for(i=0; i<16 && i + 16*y<height; i++){
00331                 memcpy(&src[i*stride], &src_plane[(i+16*y)*src_stride], width);
00332                 for(x=width; x<16*block_width; x++)
00333                     src[i*stride+x]= src[i*stride+x-1];
00334             }
00335             for(; i<16 && i + 16*y<16*block_height; i++)
00336                 memcpy(&src[i*stride], &src[(i-1)*stride], 16*block_width);
00337 
00338             for (x = 0; x < block_width; x++) {
00339                 s->m.mb_x= x;
00340                 ff_init_block_index(&s->m);
00341                 ff_update_block_index(&s->m);
00342 
00343                 ff_estimate_p_frame_motion(&s->m, x, y);
00344             }
00345             s->m.first_slice_line=0;
00346         }
00347 
00348         ff_fix_long_p_mvs(&s->m);
00349         ff_fix_long_mvs(&s->m, NULL, 0, s->m.p_mv_table, s->m.f_code, CANDIDATE_MB_TYPE_INTER, 0);
00350     }
00351 
00352     s->m.first_slice_line=1;
00353     for (y = 0; y < block_height; y++) {
00354         for(i=0; i<16 && i + 16*y<height; i++){
00355             memcpy(&src[i*stride], &src_plane[(i+16*y)*src_stride], width);
00356             for(x=width; x<16*block_width; x++)
00357                 src[i*stride+x]= src[i*stride+x-1];
00358         }
00359         for(; i<16 && i + 16*y<16*block_height; i++)
00360             memcpy(&src[i*stride], &src[(i-1)*stride], 16*block_width);
00361 
00362         s->m.mb_y= y;
00363         for (x = 0; x < block_width; x++) {
00364             uint8_t reorder_buffer[3][6][7*32];
00365             int count[3][6];
00366             int offset = y * 16 * stride + x * 16;
00367             uint8_t *decoded= decoded_plane + offset;
00368             uint8_t *ref= ref_plane + offset;
00369             int score[4]={0,0,0,0}, best;
00370             uint8_t *temp = s->scratchbuf;
00371 
00372             if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 3000){ //FIXME check size
00373                 av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
00374                 return -1;
00375             }
00376 
00377             s->m.mb_x= x;
00378             ff_init_block_index(&s->m);
00379             ff_update_block_index(&s->m);
00380 
00381             if(s->picture.pict_type == AV_PICTURE_TYPE_I || (s->m.mb_type[x + y*s->m.mb_stride]&CANDIDATE_MB_TYPE_INTRA)){
00382                 for(i=0; i<6; i++){
00383                     init_put_bits(&s->reorder_pb[i], reorder_buffer[0][i], 7*32);
00384                 }
00385                 if(s->picture.pict_type == AV_PICTURE_TYPE_P){
00386                     const uint8_t *vlc= ff_svq1_block_type_vlc[SVQ1_BLOCK_INTRA];
00387                     put_bits(&s->reorder_pb[5], vlc[1], vlc[0]);
00388                     score[0]= vlc[1]*lambda;
00389                 }
00390                 score[0]+= encode_block(s, src+16*x, NULL, temp, stride, 5, 64, lambda, 1);
00391                 for(i=0; i<6; i++){
00392                     count[0][i]= put_bits_count(&s->reorder_pb[i]);
00393                     flush_put_bits(&s->reorder_pb[i]);
00394                 }
00395             }else
00396                 score[0]= INT_MAX;
00397 
00398             best=0;
00399 
00400             if(s->picture.pict_type == AV_PICTURE_TYPE_P){
00401                 const uint8_t *vlc= ff_svq1_block_type_vlc[SVQ1_BLOCK_INTER];
00402                 int mx, my, pred_x, pred_y, dxy;
00403                 int16_t *motion_ptr;
00404 
00405                 motion_ptr= h263_pred_motion(&s->m, 0, 0, &pred_x, &pred_y);
00406                 if(s->m.mb_type[x + y*s->m.mb_stride]&CANDIDATE_MB_TYPE_INTER){
00407                     for(i=0; i<6; i++)
00408                         init_put_bits(&s->reorder_pb[i], reorder_buffer[1][i], 7*32);
00409 
00410                     put_bits(&s->reorder_pb[5], vlc[1], vlc[0]);
00411 
00412                     s->m.pb= s->reorder_pb[5];
00413                     mx= motion_ptr[0];
00414                     my= motion_ptr[1];
00415                     assert(mx>=-32 && mx<=31);
00416                     assert(my>=-32 && my<=31);
00417                     assert(pred_x>=-32 && pred_x<=31);
00418                     assert(pred_y>=-32 && pred_y<=31);
00419                     ff_h263_encode_motion(&s->m, mx - pred_x, 1);
00420                     ff_h263_encode_motion(&s->m, my - pred_y, 1);
00421                     s->reorder_pb[5]= s->m.pb;
00422                     score[1] += lambda*put_bits_count(&s->reorder_pb[5]);
00423 
00424                     dxy= (mx&1) + 2*(my&1);
00425 
00426                     s->dsp.put_pixels_tab[0][dxy](temp+16, ref + (mx>>1) + stride*(my>>1), stride, 16);
00427 
00428                     score[1]+= encode_block(s, src+16*x, temp+16, decoded, stride, 5, 64, lambda, 0);
00429                     best= score[1] <= score[0];
00430 
00431                     vlc= ff_svq1_block_type_vlc[SVQ1_BLOCK_SKIP];
00432                     score[2]= s->dsp.sse[0](NULL, src+16*x, ref, stride, 16);
00433                     score[2]+= vlc[1]*lambda;
00434                     if(score[2] < score[best] && mx==0 && my==0){
00435                         best=2;
00436                         s->dsp.put_pixels_tab[0][0](decoded, ref, stride, 16);
00437                         for(i=0; i<6; i++){
00438                             count[2][i]=0;
00439                         }
00440                         put_bits(&s->pb, vlc[1], vlc[0]);
00441                     }
00442                 }
00443 
00444                 if(best==1){
00445                     for(i=0; i<6; i++){
00446                         count[1][i]= put_bits_count(&s->reorder_pb[i]);
00447                         flush_put_bits(&s->reorder_pb[i]);
00448                     }
00449                 }else{
00450                     motion_ptr[0                 ] = motion_ptr[1                 ]=
00451                     motion_ptr[2                 ] = motion_ptr[3                 ]=
00452                     motion_ptr[0+2*s->m.b8_stride] = motion_ptr[1+2*s->m.b8_stride]=
00453                     motion_ptr[2+2*s->m.b8_stride] = motion_ptr[3+2*s->m.b8_stride]=0;
00454                 }
00455             }
00456 
00457             s->rd_total += score[best];
00458 
00459             for(i=5; i>=0; i--){
00460                 avpriv_copy_bits(&s->pb, reorder_buffer[best][i], count[best][i]);
00461             }
00462             if(best==0){
00463                 s->dsp.put_pixels_tab[0][0](decoded, temp, stride, 16);
00464             }
00465         }
00466         s->m.first_slice_line=0;
00467     }
00468     return 0;
00469 }
00470 
00471 static av_cold int svq1_encode_init(AVCodecContext *avctx)
00472 {
00473     SVQ1Context * const s = avctx->priv_data;
00474 
00475     dsputil_init(&s->dsp, avctx);
00476     avctx->coded_frame= (AVFrame*)&s->picture;
00477 
00478     s->frame_width = avctx->width;
00479     s->frame_height = avctx->height;
00480 
00481     s->y_block_width = (s->frame_width + 15) / 16;
00482     s->y_block_height = (s->frame_height + 15) / 16;
00483 
00484     s->c_block_width = (s->frame_width / 4 + 15) / 16;
00485     s->c_block_height = (s->frame_height / 4 + 15) / 16;
00486 
00487     s->avctx= avctx;
00488     s->m.avctx= avctx;
00489     s->m.me.temp      =
00490     s->m.me.scratchpad= av_mallocz((avctx->width+64)*2*16*2*sizeof(uint8_t));
00491     s->m.me.map       = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
00492     s->m.me.score_map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
00493     s->mb_type        = av_mallocz((s->y_block_width+1)*s->y_block_height*sizeof(int16_t));
00494     s->dummy          = av_mallocz((s->y_block_width+1)*s->y_block_height*sizeof(int32_t));
00495     h263_encode_init(&s->m); //mv_penalty
00496 
00497     return 0;
00498 }
00499 
00500 static int svq1_encode_frame(AVCodecContext *avctx, unsigned char *buf,
00501     int buf_size, void *data)
00502 {
00503     SVQ1Context * const s = avctx->priv_data;
00504     AVFrame *pict = data;
00505     AVFrame * const p= (AVFrame*)&s->picture;
00506     AVFrame temp;
00507     int i;
00508 
00509     if(avctx->pix_fmt != PIX_FMT_YUV410P){
00510         av_log(avctx, AV_LOG_ERROR, "unsupported pixel format\n");
00511         return -1;
00512     }
00513 
00514     if(!s->current_picture.data[0]){
00515         avctx->get_buffer(avctx, &s->current_picture);
00516         avctx->get_buffer(avctx, &s->last_picture);
00517         s->scratchbuf = av_malloc(s->current_picture.linesize[0] * 16 * 2);
00518     }
00519 
00520     temp= s->current_picture;
00521     s->current_picture= s->last_picture;
00522     s->last_picture= temp;
00523 
00524     init_put_bits(&s->pb, buf, buf_size);
00525 
00526     *p = *pict;
00527     p->pict_type = avctx->gop_size && avctx->frame_number % avctx->gop_size ? AV_PICTURE_TYPE_P : AV_PICTURE_TYPE_I;
00528     p->key_frame = p->pict_type == AV_PICTURE_TYPE_I;
00529 
00530     svq1_write_header(s, p->pict_type);
00531     for(i=0; i<3; i++){
00532         if(svq1_encode_plane(s, i,
00533             s->picture.data[i], s->last_picture.data[i], s->current_picture.data[i],
00534             s->frame_width / (i?4:1), s->frame_height / (i?4:1),
00535             s->picture.linesize[i], s->current_picture.linesize[i]) < 0)
00536                 return -1;
00537     }
00538 
00539 //    avpriv_align_put_bits(&s->pb);
00540     while(put_bits_count(&s->pb) & 31)
00541         put_bits(&s->pb, 1, 0);
00542 
00543     flush_put_bits(&s->pb);
00544 
00545     return put_bits_count(&s->pb) / 8;
00546 }
00547 
00548 static av_cold int svq1_encode_end(AVCodecContext *avctx)
00549 {
00550     SVQ1Context * const s = avctx->priv_data;
00551     int i;
00552 
00553     av_log(avctx, AV_LOG_DEBUG, "RD: %f\n", s->rd_total/(double)(avctx->width*avctx->height*avctx->frame_number));
00554 
00555     av_freep(&s->m.me.scratchpad);
00556     av_freep(&s->m.me.map);
00557     av_freep(&s->m.me.score_map);
00558     av_freep(&s->mb_type);
00559     av_freep(&s->dummy);
00560     av_freep(&s->scratchbuf);
00561 
00562     for(i=0; i<3; i++){
00563         av_freep(&s->motion_val8[i]);
00564         av_freep(&s->motion_val16[i]);
00565     }
00566     if(s->current_picture.data[0])
00567         avctx->release_buffer(avctx, &s->current_picture);
00568     if(s->last_picture.data[0])
00569         avctx->release_buffer(avctx, &s->last_picture);
00570 
00571     return 0;
00572 }
00573 
00574 
00575 AVCodec ff_svq1_encoder = {
00576     .name           = "svq1",
00577     .type           = AVMEDIA_TYPE_VIDEO,
00578     .id             = CODEC_ID_SVQ1,
00579     .priv_data_size = sizeof(SVQ1Context),
00580     .init           = svq1_encode_init,
00581     .encode         = svq1_encode_frame,
00582     .close          = svq1_encode_end,
00583     .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV410P, PIX_FMT_NONE},
00584     .long_name= NULL_IF_CONFIG_SMALL("Sorenson Vector Quantizer 1 / Sorenson Video 1 / SVQ1"),
00585 };